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CausalPrism: A Visual Analytics Approach for Subgroup-based
Causal Heterogeneity Exploration

Jiehui Zhou , Xumeng Wang, Wong Kam-Kwai, Wei Zhang, Xingyu Liu, Juntian Zhang, Minfeng Zhu and Wei Chen

Fig. 1: CausalPrism helps identify, explore, rank, and interprete causal subgroups in observational data. (A) The Causal Subgroup View
includes a tailored tabular visualization of subgroup descriptions, a subgroup editing window, and a ranking visualization of multiple
evaluation metrics to support subgroup overview, modification, and ranking. (B) The Covariate Projection View reduces units with
high-dimensional covariates to two dimensions, allowing users to analyze similarities between subgroups and assisting in merging and
splitting subgroups. (C) The Treatment Effect Validation View consists of propensity score histograms, individual treatment effect dot
plots, and detailed information of matched units, which helps users interpret effect strength and uncertainty, thereby increasing trust.

Abstract—In causal inference, estimating Heterogeneous Treatment Effects (HTEs) from observational data is critical for understanding
how different subgroups respond to treatments, with broad applications such as precision medicine and targeted advertising. However,
existing work on HTE, subgroup discovery, and causal visualization is insufficient to address two challenges: first, the sheer number
of potential subgroups and the necessity to balance multiple objectives (e.g., high effects and low variances) pose a considerable
analytical challenge. Second, effective subgroup analysis has to follow the analysis goal specified by users and provide causal results
with verification. To this end, we propose a visual analytics approach for subgroup-based causal heterogeneity exploration. Specifically,
we first formulate causal subgroup discovery as a constrained multi-objective optimization problem and adopt a heuristic genetic
algorithm to learn the Pareto front of optimal subgroups described by interpretable rules. Combining with this model, we develop a
prototype system, CausalPrism, that incorporates tabular visualization, multi-attribute rankings, and uncertainty plots to support users
in interactively exploring and sorting subgroups and explaining treatment effects. Quantitative experiments validate that the proposed
model can efficiently mine causal subgroups that outperform state-of-the-art HTE and subgroup discovery methods, and case studies
and expert interviews demonstrate the effectiveness and usability of the system. Code is available at OSF.
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1 INTRODUCTION

Causal inference is a data analysis process aiming at conclusions about
whether and to what extent treatments affect outcomes [48]. Data het-
erogeneity must be considered when estimating treatment effects, as
the effect of the same treatment may vary across subgroups. As shown
in Fig. 2, subgroups within the population responded differently to the
treatment. The treatment exerts larger effects on Subgroup 1 and Sub-
group 3 than Subgroup 2. Nevertheless, the high variance of Subgroup
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Fig. 2: An illustrative toy example. There is only one covariate, and the
change in the outcome between the treatment and control group can
be informally thought of as the treatment effect. Subgroup 3 has a high
effect and low variance, which is better than Subgroup 1 and 2.

1 indicates that individual differences (uncertainty of the outcome) ex-
ist. Discovering those subgroups with strong treatment effect and low
outcome variance (hereinafter referred to as significant treatment effect)
compared to the overall population is widely used in domains such as
healthcare [50], marketing [56], and public administration [23]. For
example, marketers want to find customer groups where advertising
more effectively drives purchases. Since Randomized Controlled Trials
(RCTs), known as the gold standard for causal inference [31], are not
always feasible due to cost or ethical concerns, there is a strong need to
uncover those causal subgroups from observational data effectively.

In practical applications, analyzing causal heterogeneity faces two
challenges. First, it is nontrivial and challenging to identify important
subgroups from a large number of subgroup candidates. Subgroups can
be described by different combinations of variables, which could lead to
a combinatorial explosion of candidates. Selecting optimal subgroups
requires trade-offs among various targets in the objective space, such
as effect strength, outcome variance, and subgroup coverage, further
complicating the subgroup discovery process. Coordinating the above
factors has to follow users’ analysis requirements. Nevertheless, the
identification model can hardly communicate with humans due to the
lack of interpretability, which causes the second challenge. The sub-
groups obtained by the black-box model may hardly be interpreted by
or fail to support analysis tasks. Users still need to tediously analyze
and compare multiple subgroups to determine which one they prefer. In
addition, without a treatment effect explanation, numerical causal con-
clusions alone are difficult to convince users, especially in high-stakes
safety and life-critical fields.

Existing work is insufficient to address these challenges. Automated
heterogeneous treatment effect (HTE) estimation methods, such as
causal trees [2] and causal forests [57], mainly construct hierarchical
structures for individuals in datasets and identify leaf nodes in the
hierarchies as subgroups. However, not all leaf nodes can reflect a sig-
nificant treatment effect, leading to less useful results. Therefore, users
still need to go through tedious review and analysis to find subgroups
that meet their requirements. Subgroup discovery methods [6, 22, 55]
can directly optimize correlation objectives but lack attention to the
more complex causal effects that require statistical inference and con-
founding bias correction. Some researchers use visualization to assist
causal analysis, but they either focus on the representation of causal
graph structure [37, 58, 59, 66], manual selection of variables to divide
subgroups [29], or clustering to obtain subgroups whose meaning is
difficult to describe [28]. Therefore, how to support the cooperation
between human intelligence and computing power in the analysis of
HTE is still underexplored.

In this work, we propose a visual analytics approach for subgroup-
based causal heterogeneity exploration that supports users in effectively
identifying optimal subgroups from observational data, comparing and

ranking different subgroups, and verifying treatment effects. First,
we propose a causal subgroup discovery model based on constrained
multi-objective optimization (MOO). Subgroups are described by inter-
pretable rules, where the rule antecedents are conjunctions containing
covariates and corresponding values, and the consequents correspond
to subgroup evaluation metrics, such as effects and variances. Coverage
and antecedent length are used as constraints to ensure interpretabil-
ity. Due to multiple objectives and constraints, the optimal Pareto
front of the subgroup is learned by a heuristic searching algorithm for
user analysis. Second, we design and develop an interactive prototype
system, CausalPrism, which incorporates intuitive visualizations of
subgroups, evaluation metrics, and explanations of treatment effects,
thereby facilitating users’ understanding, comparison, and verification
of causal subgroups. Quantitative experiments, case studies, and expert
interviews demonstrate the effectiveness and usability of the proposed
model and system. In summary, our contributions are as follows:

• We propose a subgroup discovery model based on constrained
multi-objective optimization, which can mine rule-explained sub-
groups with significant treatment effects from a large amount of
high-dimensional observational data that outperforms state-of-
the-art methods.

• We designed and implemented an interactive visual analytics
prototype system, CausalPrism, which includes table-based sub-
group visualization, multi-attribute ranking, and matching unit-
based explanation of treatment effects. The system supports users
in understanding, comparing, and validating causal subgroups. Its
utility has been proved through case studies, and positive feedback
has been received during expert interviews.

2 RELATED WORK

2.1 Heterogeneous Treatment Effect Estimation

Treatment effects vary across the whole population. Conditional aver-
age treatment effect (CATE), individual average treatment effect (ITE)
and causal rules comprise current HTE research. Reviews [30,68] offer
in-depth analyses of causal inference.

CATE evaluates treatment effects on specific subgroups of the pop-
ulation, given similar covariates like demographics. To optimize the
heterogeneity of treatment effects, tree-based methods [2, 3, 57] are
commonly employed to partition the covariate space into subspaces.
For instance, Causal Tree [2] constructs the tree and estimates treatment
effects in each subspace using separate data, avoiding overfitting by
cross-validation. Wager et al. [57] suggested Causal Forest, combining
causal tree ensemble results for more robust and smooth estimation.
Root-to-leaf node routes naturally define subgroups of heterogeneous
CATEs, making the tree model interpretable. However, tree-based
methods may have limited performance due to greedy tree building
process and does not necessarily return the “optimal” structure.

ITE compares outcomes with and without treatment. Since only one
outcome is visible, another must be estimated. Existing techniques
are single- or multi-model-based depending on whether treatment and
control groups are estimated independently. The former uses regression
to fit treatment effects. For example, Hill et al. [33] employs Bayesian
additive regression trees to fit the outcome surface. The latter fits the
treated and control groups separately, achieving better performance
for significant differences between groups’ outcomes. The base model
uses off-the-shelf estimators like linear regression [12] or neural net-
works [38]. With well-tuned parameters, these models can accurately
estimate effects but are uninterpretable.

Several researchers have tried to find causal rules in data. For
example, CRE [9] is a two-stage method that first produces rules using
methods such as random forest or Gradient Boosting Machines, then
picks robust ones using stability selection regularization. After mining
association rules from data, Li et al. [46] conducted a cohort study to
test whether the association rules were causal.

Many methods have presented estimators that can accurately esti-
mate HTE despite confounding biases. We leverage existing estima-
tors but focus on finding subgroups with significant treatment effects
among many candidates. We present a constrained MOO-based causal
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subgroup discovery model that outperforms tree-based and black-box
approaches in significance and interpretability.

2.2 Visual Causality Analysis
Automated causal detection algorithms are built upon assumptions and
complex causal mechanisms that are hardly fulfilled in real life, causing
accuracy and interpretability issues. Visualizations have been used to
explore and verify causality interactively, which can be divided into
homogeneous and heterogeneous causality investigations.

Homogeneous causality assumes that data’s causal mechanism is
static and stable. Visualization helps users grasp complex causal rela-
tionships and make decisions. Graph-based visualizations [7,35,58,66]
have been widely used to demonstrate causality in multi-attribute
datasets, emphasizing the use of statistics to locate and manipulate im-
proper relationships for what-if analysis. They employ advanced layout
designs to highlight attribute distributions and enhance graph readabil-
ity. In addition, design factors like node size [39], edge shape [8], and
crowd beliefs [70] affect users’ understanding of causal relationships.
Bar charts and scatter plots are also used to infer causality [40, 67, 69].
However, these approaches lack generalizability due to population
variances such as demographics and environmental factors.

Heterogeneous causality examines causal relationships or effects
that vary over time or data subgroups. Most work examines causal
structural heterogeneity. In Causal Structure Investigator [59], users
can acquire data subdivisions through manual filtering and k-means
clustering. Then, these subdivisions are mapped to causal graphs for
detailed analysis of causal paths. Jin et al. [37] focus on subsets in
event sequences. Overlapping adjacency matrices with inner and outer
sections lets users easily identify the differences in causal relation-
ships between subsets. Deng et al. [19] created causal graph bands
with compass glyphs for spatio-temporal sequences to show dynamic
causal relationships in period-based time windows. This helps users
understand influence transmission and identify spurious causalities.
DOMINO [60] applies time delays and event constraints to temporal
causality analysis, facilitating hypotheses formulation and validation.

Other research examines causal inference heterogeneity. The Ab-
solute Standardized Mean Difference (ASMD) plot is used to assess
covariate balance in groups after weighting and propensity score match-
ing [25,52]. Guo et al. [28] created VAINE to enable users to find statis-
tical phenomena like Simpson’s paradox by manually selecting clusters
in covariate projections and observing their impact. Causalvis [29],
a later proposal, enables the visualization of a whole causal analysis
workflow. The raincloud and beeswarm plots in the Treatment Ef-
fect Explorer module let users manually pick subgroups faceted by
covariates and analyze ITE distribution to examine heterogeneity.

However, the present HTE visualization work involves time-
consuming manual participation to locate subgroups, and the sub-
groups obtained through clustering lack explicit interpretable descrip-
tions. Therefore, we propose CausalPrism to automatically obtain
rule-described subgroups with significant treatment effects through
optimization and design visualizations for subgroup exploration, com-
parison, and treatment effect validation.

2.3 Subgroup Discovery and Visualization
Subgroup discovery (SD) is a descriptive data mining method that finds
data subgroups with intriguing patterns on certain goals, as summa-
rized in comprehensive surveys [4, 32]. Data subgroups can be repre-
sented using description languages like attribute-value pairs and logical
forms(e.g., conjunctions, inequalities, and fuzzy logic). Subgroup inter-
estingness can be measured using binary, nominal, or numerical targets.
Post-processing methods have been applied to select diverse and less re-
dundant subgroups. Search methodologies like exhaustive and heuristic
search have been used due to the large number of candidate subgroups.

Using the exhaustive techniques [6,26,27,62], all possible subgroups
are searched. Since viable subgroups are exponentially large, a naive
exhaustive search is time-consuming. Minimum support, optimistic
estimate pruning, and generalization-aware pruning can reduce the
hypothesis space. SD-Map [6] is an exhaustive SD approach that uses
depth-first search to produce candidates, extending the Frequent Pattern

(FP) Growth-based association rule mining method. The SD-Map* [5]
is extended with binary, categorical, and continuous target variables.

Further studies [18, 22, 43, 55, 72] employed efficient heuristic meth-
ods. For example, DSSD [55] uses beam search, which starts with an
initial solution and subsequently spreads to several candidates. Top
performers are kept for the next iteration until a stopping condition is
reached. SDIGA [18] is an evolutionary fuzzy rule induction method
that facilitates the discovery of general rules by allowing variables to
take multiple values. Subgroups can be evaluated in terms of confi-
dence, support, and unusualness.

Visualization techniques have also been proposed in order to support
subgroup-level analysis tasks, such as subgroup multi-feature visual-
ization [21, 24], model diagnosis on data subsets [14, 20, 42, 54, 71],
and high-dimensional data subspace exploration [47, 64, 65]. For ex-
ample, Taggle [21] employs a tabular visualization design that allows
for hierarchical grouping and sorting of massive amounts of data. The
icicle plot [20] and the map-based metaphor [47] provide help for
comparisons between subgroups.

However, most SD methods only focuse on correlations, involving
just covariates and outcomes. It is unsuitable for SD in causal scenarios
(treatment, covariates, and outcomes must be considered). To this end,
we formulate causal SD as a constrained MOO problem that can be effi-
ciently solved using heuristic search. A range of subgroup visualization
techniques, such as multi-attribute ranking [24], are incorporated into
the CausalPrism system to help users explore and compare subgroups.

3 BACKGROUND

3.1 Preliminaries

We introduce the basis of causal inference under the potential outcome
(PO) framework [51] and give examples based on medical scenarios.

A unit is an individual or object under study. A medical study unit
may be a patient. The subscript 𝑖 denotes the 𝑖-th unit.

A treatment is an intervention or exposure that subjects to a unit.
A new medicine or therapy could be used as a treatment in a medical
study. Let a binary 𝑇 indicate whether a unit has received a treatment.
Units satisfying 𝑇 = 1 belong to the treatment group, while those 𝑇 = 0
belong to the control group.

Outcomes are what would happen to units under different treatments.
Each unit has two potential outcomes: factual outcome and counter-
factual outcome. For instance, patient survival time is an outcome in a
medical study. The potential outcome with treatment is 𝑌 (𝑇 = 1), also
abbreviated as 𝑌 (1), and without treatment, it is 𝑌 (0).

Covariates are background variables that affect treatment assign-
ment and outcome. For example, patient demographic information such
as age may influence medication use (treatment assignment) and blood
pressure (outcome). Observational studies often control for covariates
to mitigate confounding and provide more unbiased effects estimates.
Covariates are represented as a vector X𝑖 = (𝑥𝑖,1, · · · , 𝑥𝑖,𝑑), where 𝑑 is
the number of covariates.

Observational data refers to data collected without the researcher
manipulating the environment or the subjects being studied. It differs
from RCTs, which randomly assign treatment to each unit. The obser-
vational data containing 𝑛 units is denoted by D = {(𝑇𝑖 ,X𝑖 ,𝑌𝑖)}𝑛𝑖=1.

Treatment effect refers to the impact of a treatment on an outcome.
It can be obtained by quantitatively comparing the potential outcomes
in the treatment and control conditions at different levels, such as
populations, subgroups, and units. For unit 𝑖, its individual treatment
effect (ITE) is defined as:

𝜏𝑖 = 𝑌𝑖 (1) −𝑌𝑖 (0). (1)

Unfortunately, for any unit, only one of the two potential outcomes
can be observed, so ITE is not identifiable. One way to address this
lack of counterfactual outcomes is to estimate the average treatment
effect (ATE) on the population, defined as follows:

𝜏 = E[𝑌 (1) −𝑌 (0)] . (2)
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ATE may fail to accurately reflect treatment effects due to the het-
erogeneity of units. This is overcome by conditional average treatment
effect (CATE) on subgroups, which is defined as follows:

𝜏(x) = E[𝑌 (1) −𝑌 (0) | X = x] . (3)

Propensity score is a balancing score 𝑒(x) = 𝑃(𝑇 = 1 | X = x), de-
fined as the conditional probability of getting a treatment given the
covariates. In observational data, a biased treatment effect would be
obtained by directly using the difference between the average out-
come of the treatment and control groups because the treatment as-
signment is correlated with covariates. Rubin et al. [10] proved that
{𝑌 (0),𝑌 (1)} ⊥ 𝑇 | 𝑒(X) under the assumption of unconfoundedness.
For binary treatment, the Logistic regression model is commonly used
to estimate propensity scores [13].

Outcome Variance refers to the outcome variability among the units
in the treatment and control group. A lower variance means that the
treatment leads to a more consistent outcome among units. Let 𝜎2 be
the variance.

Causal Subgroup refers to specific subgroups within the population
that exhibit significant treatment effects. For example, the preven-
tive effect of influenza vaccine is more significant in the elderly and
immunocompromised people. S is used to represent subgroups.

3.2 Design Requirements
We distilled the design requirements from interviews with three experts
(E1-3) and a literature review. Data analysts E1 and E2 have three years
of work experience in a technology firm. Their daily tasks include eval-
uating KPI anomalies and guiding advertising placement using causal
analysis on observational data. E3, a university associate professor,
has written multiple causal inference studies. They noted that causal
inference is plagued by data heterogeneity, and massive amounts of
observational data lack appropriate exploration tools. Causality inter-
pretability is also crucial since users cannot make decisions if they
don’t trust the result. Finally, the requirements are listed.
R1 Descriptive subgroup identification. Observational data usually

contains a large potential exploration space with many variables.
Although traditional data clustering methods can be used to dis-
cover clusters, they do not give a corresponding interpretation.
Experts mentioned that “Although high-value groups can be man-
ually segmented based on domain knowledge, it often requires
multiple attempts of different filtering conditions.” Users can
take advantage of automatically identified subgroups to further
discover interesting causal patterns.

R2 Subgroup understanding and valuation. Subgroups involve
rich information such as variables used in subgroup descriptions,
value distribution of covariates, treatment effect, and variance
scores. Users should be able to browse such information to un-
derstand the characteristics of a subgroup. It is necessary for the
system to provide a clear and intuitive visualization for subgroups.

R3 Subgroup adjustment and hypothesis. The subgroups automat-
ically discovered by the model may not satisfy users. Experts say
that for advertising scenarios, they aim to boost user spending
and meet total profit goals. Therefore, when necessary, they will
relax the filtering conditions or merge small groups to enlarge the
target subgroup. Our approach needs to support users to adjust
subgroups. The basis of adjustment could be the understanding
of the target subgroup, domain knowledge from users, or the
analysis results of what-if tests on new subgroups.

R4 Subgroup comparison and ranking. Users have diverse prefer-
ences for causal subgroups. For example, when determining the
target audience for advertising, conservative users are willing to
choose subgroups that are generally effective and have smaller
variances, while risk-takers try subgroups that have stronger ef-
fects but may also have greater outcome fluctuations. There-
fore, we need to allow users to compare subgroups from multiple
perspectives and rank them based on their preferences to select
satisfactory subgroups.

R5 Treatment effect validation. Users need to understand why
certain treatment effect is estimated and be provided with data

evidence to explain their rationality. In addition, the estimated
treatment effect may be biased by the size and distribution of
the data units. Seeking reliable conclusions, visualizations are
needed to help users rule out suspicious causal effects.

4 WORKFLOW OVERVIEW

To address the requirements mentioned in Sec. 3.2, we developed
CausalPrism, a visual analytics system for analyzing causal hetero-
geneity from a subgroup perspective, allowing users to identify, explore,
rank, and validate causal subgroups. Figure 3 illustrates the workflow
of CausalPrism. The input is observational data, including covariates
(e.g., age, height, weight), a treatment (e.g., drug), and an outcome
(e.g., survival time). Given the input data, the system works as follows:

(A) First, causal subgroups are automatically identified by the model
from the observational data in which the treatment has a significant
effect on the outcome. Since there are multiple objectives, including
treatment effects and outcome variance, the discovered subgroups are
usually an optimal solution set. Constraints such as subgroup coverage
can also be imposed on the subgroup discovery process. (R1, Sec. 5.1)

(B) Second, to understand the subgroups, their interpretable descrip-
tions (e.g., “age>60 AND sex=female” can be considered as a descrip-
tion of the older female group) and evaluation metrics (e.g., treatment
effects, outcome variance) are presented. Users can get an overview of
the discovered subgroups and view the details of a subgroup on demand.
(R2, Sec. 6.2)

(C) Third, custom subgroups are allowed, where users can hypothe-
size subgroups based on domain knowledge for what-if analysis. By
weighing evaluation metrics such as effect strength and subgroup size,
users can make multi-criteria decisions and select a preferred subgroup.
(R3, R4, Sec. 6.2, Sec. 6.3)

(D) Finally, after the subgroups of interest have been selected, expla-
nations of the treatment effect within the subgroups can be examined.
Analytical evidence, such as the uncertainty of individual treatment
effects, is provided, thus helping users exclude the unreliable subgroup
and enhance trust in the results. (R5, Sec. 5.2, Sec. 6.4 )

5 MODELS

In this section, we introduce the models used in our system.

5.1 Causal Subgroup Discovery

We first frame causal subgroup mining as a constrained multi-objective
optimization problem and solve the optimal subgroup set through an
efficient heuristic algorithm. (R1)

5.1.1 Problem formulation

Without loss of generality, we consider observational data whose co-
variates are binary, i.e., X𝑖 = (𝑥𝑖,1, · · · , 𝑥𝑖,𝑑) ∈ {0,1}𝑑 . Categorical
variables can be binarized by one-hot encoding (such as color=red,
color=yellow, color=blue). As for numerical variables, we can convert
the value intervals to binary by bucketing strategy (such as age≤10,
age>10, · · · , age≤100, age>100). Formally, our goal is to learn causal
subgroups S from the given observational data D. We use interpretable
rules (simple logical structures of the form “IF 𝑃 THEN 𝑄”) to describe
the subgroup S : 𝛼𝛼𝛼⇒ [𝜏,𝜎2 (0),𝜎2 (1)], which contain the antecedent
𝛼𝛼𝛼 and the consequent [𝜏,𝜎2 (0),𝜎2 (1)].

A antecedent 𝛼𝛼𝛼 is the condition of the subgroup, expressed as the
conjunctive normal form (CNF) of a series of atoms

∧
𝑗∈Γ 𝑥 𝑗 , e.g.,

“age > 25 AND job == teacher”. Γ is the covariate indices used in the
antecedent, which is a subset of the indices of all binary covariates, i.e.,
Γ ∈ 2[𝑑 ] , where [𝑑] = {1, · · · , 𝑑} and 2[𝑑 ] means the power set of [𝑑].
The atom 𝑥 𝑗 is the smallest interpretable element. The mapping from
a S to a CNF is given by 𝛼𝛼𝛼S (X𝑖) =

∧
𝑗∈ΓS 𝑥𝑖, 𝑗 . For brevity, we call

it as
∧

𝑗∈S 𝑥𝑖, 𝑗 . When 𝛼𝛼𝛼S (X𝑖) is true, the 𝑖-th unit is covered by the
subgroup S. We define the length of the antecedent |𝛼𝛼𝛼 | as the number
of different covariates. For example, the length of the antecedent “10 <
age <= 25 AND sex = female” is 2. |𝛼𝛼𝛼 | reflects the readability of the
antecedent; shorter antecedents are easier for users to interpret.
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Fig. 3: A four-step workflow for subgroup-based causal heterogeneity exploration. (A) The model automatically mines subgroups with significant
treatment effects from observational data. (B) Subgroups can be explored through tabular and multi-attribute visualizations. (C) Users can interactively
analyze new subgroup hypotheses and achieve multi-criteria decision-making based on their preferences. (D) Effect interpretation based on matched
units simulates the user’s familiar A/B testing, aiding in result validation.

The consequent is the evaluation results of the subgroup, consisting
of the treatment effect 𝜏, the control group variance 𝜎2 (0), and the
treatment group variance 𝜎2 (1).

To estimate the CATE 𝜏 for units covered by the subgroup, we
employ Inverse Probability Weighting (IPW) [34], which assigns appro-
priate weights 𝑤𝑖 =

𝑇𝑖
𝑒𝑖
+ 1−𝑇𝑖

1−𝑒𝑖 to each unit to balance the distribution
of covariates in the treatment and control groups, thereby simulating
RCTs. The normalized weighted average of the factual outcomes for
the treatment and control groups can estimate treatment effects [36]:

𝜏S =

∑
𝑖∈D+

S
𝑤𝑖𝑌𝑖∑

𝑖∈D+
S
𝑤𝑖

−
∑
𝑖∈D−

S
𝑤𝑖𝑌𝑖∑

𝑖∈D−
S
𝑤𝑖

, (4)

where DS denotes the covered data, D+ denotes the data that re-
ceived the treatment (𝑇 = 1), and D− denotes the data that did not
receive the treatment (𝑇 = 0), D+

S = {𝑖 |𝑖 ∈ D+∧𝛼𝛼𝛼S (X𝑖) = 1} denotes
the units in the treatment group that are covered by the subgroup S,
D−

S = {𝑖 |𝑖 ∈ D− ∧𝛼𝛼𝛼S (X𝑖) = 1} denotes the units in the control group
that are covered by the subgroup S.

Since obtaining treatment effects is a statistical estimation problem,
it is important to consider the uncertainty of the treatment effect, which
can be measured by the outcome variance, defined as:

𝜎2
S (0) =

∑
𝑖∈D−

S
𝑤𝑖 (𝑌𝑖 −𝑌𝑤)2∑
𝑖∈D−

S
𝑤𝑖

𝜎2
S (1) =

∑
𝑖∈D+

S
𝑤𝑖 (𝑌𝑖 −𝑌𝑤)2∑
𝑖∈D+

S
𝑤𝑖

,

(5)

where 𝑌𝑤 is the weighted outcome mean.
Therefore, we formalize learning causal subgroups from observa-

tional data as a constrained multi-objective optimization problem:

max
S

𝜏S

min
S

𝜎2
S (0),𝜎

2
S (1)

s.t. |DS | ≥ 𝐶

|𝛼𝛼𝛼S | ≤ 𝐿.

(6)

To ensure interpretability and meet user personalized needs, two
constraints are added. |DS | ≤𝐶 limits the unit covered by the subgroup
to at least 𝐶, and |𝛼𝛼𝛼S | ≤ 𝐿 limits the length of the antecedent by 𝐿.

5.1.2 Solving the problem
Solving the optimization problem of Eq. (6) is not easy because the
decision variable S is a rule-described subgroup rather than a single
continuous variable, and the problem contains multiple objectives and
constraints that are difficult to differentiate. Analytic solution or gra-
dient descent methods are thus not applicable to this problem. For
multi-objective problems, it is often impossible to obtain a single ideal
optimal solution because optimizing one objective is likely to be at
the expense of another objective. Therefore, the solution most often

Fig. 4: Illustration of the proposed model to discover optimal causal
subgroups. (A) Schematic diagram of the Pareto front, where circles
represent feasible subgroups for which small objective values are pre-
ferred over large values. The subgroup in Front 1 is not dominated by
other subgroups, and the subgroup in Front 2 is dominated only by those
in Front 1. (B) Illustration of the iterative heuristic algorithm for solving
the multi-objective optimization problem. In each iteration, offspring sub-
groups are generated from the parent subgroup and survived by first
comparing the front level and then the crowding distance.

consists of a series of non-dominated subgroups, more formally called
the Pareto front. As shown in Fig. 4-(A), assuming two minimizing
objectives 𝑓1 and 𝑓2 (if there are both maximizing and minimizing ob-
jectives, we can convert them to minimizing by adding a negative sign
to maximizing), the circle represent a feasible solution (i.e., a subgroup
in our problem). Front 1 denotes the set of non-dominated solutions
because no other solution is better than them. In mathematical terms,
one solution 𝑠1 (Pareto) dominates another solution 𝑠2, if

∀𝑖 ∈ {1, . . . ,𝑚}, 𝑓𝑖 (𝑠1) ≤ 𝑓𝑖 (𝑠2) , and
∃𝑖 ∈ {1, . . . ,𝑚}, 𝑓𝑖 (𝑠1) < 𝑓𝑖 (𝑠2) ,

(7)

where 𝑚 is the number of objectives.
In order to efficiently find the subgroups belonging to the Pareto

front, we employ a heuristic genetic search algorithm [17]. As shown
in Fig. 4-(B), the algorithm mainly consists of 4 steps.

1. Subgroups initialization. We use binary random sampling to
generate binary vectors, where 0 represents not selecting the corre-
sponding covariates, and 1 indicates that it is selected, resulting in
different antecedents for describing the subgroups. The default initial
number of subgroups is 100.

2. Offspring generation. Existing subgroups are used to generate
new subgroups by crossover and randomly flipping binary vectors. For
example, a new subgroup is described by splicing the first half of the
antecedent in Subgroup 𝑆1 onto the second half of the antecedent in
Subgroup 𝑆2. This step helps to expand the search space as much as
possible without falling into a local optimum. Together, the existing
and new subgroups form a candidate population.

3. Non-dominated sorting. The dominance relationship between
all subgroups is obtained through a pairwise check. The subgroups
that are not dominated by any other subgroups form Pareto front 1; the
subgroups dominated only by the front 1 are the front 2, and so on.
Therefore, all subgroups are divided into several ordered levels.
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Fig. 5: Illustration of propensity score matching. Colors represent dif-
ferent covariates, and drug icons indicate treatment. Matching reduces
confounding bias by finding comparable treatment and control units.

4. Crowding distance sorting. The crowding distance is the Man-
hatten distance in the objective space, which measures the distribution
density of subgroups. For instance, in Fig. 4-(A), the crowding distance
of subgroup 𝑆1 is 𝑑1

𝑓 max
1 − 𝑓 min

1
+ 𝑑2

𝑓 max
2 − 𝑓 min

2
. The boundary subgroups in

front (such as 𝑆3 and 𝑆4) will be given an infinite crowding distance.
The subgroup with a larger crowding distance is given priority, thereby
ensuring the diversity of the solution space. After sorting with the front
as the first priority and crowding distance as the second priority, the
top-ranked subgroups are retained, while other subgroups are discarded.

Steps 1-4 are performed iteratively until a predetermined number of
iterations is reached or the target values of the subgroups no longer im-
prove. During this process, solutions that do not satisfy the constraints
or are duplicated are eliminated. The subgroups belonging to front 1
obtained at the end of the iterative process are used as outputs.

5.2 Treatment Effect Explanation
Unlike prediction or classification problems, the ground truth of treat-
ment effects is often unknown because we cannot simultaneously ob-
serve two contrasting outcomes. Existing causal inference methods
usually estimate treatment effects through confounding balancing and
statistical inference, which are naturally uncertain. Therefore, provid-
ing reasonable explanations for treatment effects is crucial to help users
interpret the results and enhance trust. (R5)

We utilize propensity score matching to generate explanations of
treatment effects, which mimic the A/B testing familiar to users. As
shown in Fig. 5, for subgroups automatically discovered or manually
added by users, the units covered may have different covariates. For ex-
ample, the elderly may have different demographic characteristics such
as height and weight. To balance these confounders, we identify pairs of
units from treatment and control groups whose covariates are similar or
even identical, i.e., Distance(X𝑖 ,X 𝑗 ) ≤ 𝜖 . The naive matching method
is exactly matching, which requires that the matched unit covariates are
identical; however, in high-dimensional settings, there are rarely exact
matches. Therefore, we match units by the distance between propensity
score, i.e., Distance(X𝑖 ,X 𝑗 ) = |𝑒(X𝑖) − 𝑒(X 𝑗 ) |, which transforms the
problem of high-dimensional space matching into scalar propensity
score matching and controls for confounding bias. In the implementa-
tion, we set the threshold 𝜖 = 0.1 and greedily find the nearest matching
unit in the control group for the units in the treatment group, guaran-
teeing that each unit matches at most once. Based on the difference in
the outcomes (individual treatment effects) for the matched units, users
can learn about the concentration and distribution of effects for that
subgroup and thus judge the reliability of the estimated effects.

6 INTERFACE DESIGN

We developed a prototype system, CausalPrism, to help users im-
plement the workflow proposed in Sec. 4. This section presents an
overview of the system and details of visual design and interaction.

6.1 System Overview
As depicted in Fig. 1, CausalPrism offers three views: Causal Sub-
group, Covariate Projection, and Treatment Effect Validation. These
views enable subgroup exploration, comparison, and explanation of
treatment effects. We demonstrate an analysis flow that uses these
views to analyze causal heterogeneity in observational data. A data

analyst wants to see if the treatment affects the outcome differently
across subgroups. She enters the data into the system and sets treatment,
outcome, maximum antecedent length, and minimum coverage. The
model (Sec. 5.1) automatically identifies subgroups with significant
treatment effects (R1). The Causal Subgroup View (Fig. 1-A) offers
an overview of causal subgroups, including their description and eval-
uation metrics (R2). Based on domain knowledge, she adds a new
subgroup to analyze together (R3). In the Covariate Projection View
(Fig. 1-B), she integrates small, close subgroups into a large one (R3).
Since there are many possible subgroups, the multi-attribute ranking
function is resorted to identify preferred ones (R4). To better under-
stand the treatment effect in the subgroup, she consults the Treatment
Effect Validation View (Fig. 1-C). The propensity score histogram
shows the proportion of matched units in treatment and control groups.
She then interprets the effect strength and uncertainty using dot plots
of matched pairs and detailed information (Sec. 5.2, R5).

6.2 Causal Subgroup View

The Causal Subgroup View contains three parts: (1) a table-based an-
tecedent visualization to intuitively convey the meaning of the subgroup
(R2); (2) a subgroup editing window for additions and modifications to
improve the identified subgroups (R3); and (3) an evaluation metrics
visualization that supports multi-attribute ranking to facilitate personal-
ized comparison of subgroups (R4).

Users need antecedents and consequents to grasp causal subgroups.
Antecedents include covariates and values in the form of CNF, and
consequents include evaluation metrics. Thus, various one-to-many
relationships (subgroup → covariates, covariate → values, subgroup
→ metrics) exist. Tabular, matrix, and multi-attribute ranking visualiza-
tions inspire us to intuitively visualize this information. Tabular/matrix
forms like UpSet [45] and Taggle [21] are useful for analyzing set
relationships. Multi-attribute ranking visualizations like LineUp [24]
and SRVis [61] aid in multi-criteria decision-making. Our bespoke
table-based view(Fig. 1-A1) shows subgroups as rows and covariates
and evaluation metrics as columns. Expanding a covariate column
displays its distribution. Bar charts display distinct value counts for
category covariates. Smooth line charts show the count over numerical
covariates’ value domain. The cell displays subgroup covariate values
as circles or rectangles, reflecting discrete values and continuous inter-
vals. Clicking the “Add Subgroup” or “Edit Subgroup” button opens
the “Subgroup Edit Box”(Fig. 1-A2), allowing users to alter covariate
values and identify the subgroup with relevant domain semantics.

The right side of the table (Fig. 1-A3) displays a multi-attribute de-
piction of subgroup evaluation metrics, with each column representing
a measure. Horizontal bars represent metric values. Users can apply
an inverted mapping to measures like variance, where more minor is
better. Users can drag to combine metrics and add weights to construct
stacked bar charts to convey preferences. Sorting and filtering lets users
find relevant subgroups faster.

6.3 Covariate Projection View

The Covariates Projection View (Fig. 1-B) displays each unit’s low-
dimensional projection. Users have trouble intuitively comparing units
because raw observations include many covariates. To downscale high-
dimensional units to the 2D plane, we use non-metric multidimensional
scaling [41], where similar units are close. The scatter plot highlights
units from the selected subgroup in the Causal Subgroup View, showing
subgroup size and connectivity. To adjust subgroup size, users can click
“Merge subgroup” or “split subgroup” (R3). Analysis noise can be
reduced by using a switch to hide non-subgroup units.

6.4 Treatment Effect Validation View

The Validation View (Fig. 1-C) has three parts: (1) The histogram
depicts the treatment and control group units’ propensity score distribu-
tion. (2) The treatment effect dot plot shows the distribution of ITE of
sampled matched pairs in the treatment and control groups. (3) The unit
information table gives detailed treatment, covariates, and outcomes of
matching units, enhancing users’ trust (R5).
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Table 1: Dataset statistics for quantitative experiments.

Dataset #Units #Categorical #Numerical
Syn-1 3000 5 5
Syn-2 3000 5 15
Syn-3 4000 5 25
Syn-4 4000 5 45
Syn-5 4000 5 75
Syn-6 4000 5 95
Twins 23968 3 46
IHDP 747 19 6

The histogram (Fig. 1-C1) of unit distribution with varied propensity
scores indicates covariate similarity across units. The propensity score
is on the horizontal axis, and the number of units is on the vertical. The
treatment and control groups had yellow and pink distributions. The
overlapping distribution is brown. More overlap between these two
groups’ distributions means better covariate balancing, reducing effect
estimation bias. The top of the histogram shows the number of units in
the two groups and matched pairs.

The treatment effect dot plot (Fig. 1-C2) helps to understand how
effect is calculated using the propensity score matching. Each dot
represents a matched pair of treatment and control units. A dot’s
horizontal position indicates the ITE. The average of ITE is represented
as vertical lines, while confidence intervals are represented as gray
rectangles at the bottom of the axis. The unit information table (Fig. 1-
C3) provides details on matched units. The left columns represent
unit ID, propensity score, treatment, and outcome. Other columns are
covariates. Clicking on the dot in the dot plot highlights corresponding
rows. Unit-based data can help users understand how treatment affects
outcomes through particular examples.

7 EVALUATION

In this section, we implement quantitative experiments to evaluate
the causal subgroup discovery model. Two case studies and expert
interviews further validate the usefulness of CausalPrism.

7.1 Quantitative Experiments
The quantitative experiment aims to assess the efficacy of the proposed
model in identifying subgroups with significant treatment effects. Based
on multiple synthetic datasets and real datasets, we compare the model
with various baselines on different metrics.

Datasets. We employed synthetic datasets and real-world datasets.
Following the settings in [2,63], we sampled units under the assumption
of unconfoundedness. Some covariates are categorical, and others
are numerical with a normal distribution. We simulated non-random
treatment assignment in observational data by creating a treatment
variable 𝑇 determined by a Bernoulli distribution. We also produced
the treatment effect TE and the outcome 𝑌 , calculated from covariates
and parameter vectors. Categorical covariates are converted to one-hot
encoding for computation. For detailed descriptions of the generation
process, please see OSF. We also collected real-world dataset including
Twins1 and IHDP2. The details of the datasets are shown in Tab. 1.

Baselines. We compare the proposed model with two groups of
algorithms. The first group is the popular HTE estimation algorithms:
(1) Causal Tree (CT) [2]; (2) Causal Forest (CF) [57]; and (3) Causal
Rule Ensemble (CRE) [9]. The second group is the rule learning and
subgroup discovery algorithms: (1) BRCG [16]; (2) Decision Tree
(DT) [11]; (3) Pysubgroup (PYS) [44]. In the first group, CRE can
explicitly obtain the antecedent and treatment effect of the subgroup.
For CT and CF, it can be considered that the path from the root to the
leaf nodes in the tree structure is the antecedent of the causal subgroup.
The second group of methods can only get the correlation subgroups.

1https://github.com/AMLab-Amsterdam/CEVAE/tree/master/
datasets/TWINS

2https://search.r-project.org/CRAN/refmans/bartcs/html/
ihdp.html

Fig. 6: Descriptions of a subgroup with good credit in Case 1. (A)
Explanation of treatment effects shows that the subgroup has low effect
and variance. (B) A balanced histogram of propensity scores and most
matched pairs have a zero ITE.

In order to adapt to the causality setting, we add a post-processing
step. CATE and variance are calculated on the data covered by each
subgroup via Eq. (4) and Eq. (5).

Metrics. We evaluate the quality of causal subgroups obtained from
different perspectives. First, in order to evaluate the multi-objective
optimization of treatment effect and outcome variance, it is proposed
that (1) Precision(P) = (the true number of dominating subgroups)/(the
number of subgroups in the front discovered by the method). Due to
the lack of ground truth for subgroups belonging to the Pareto front,
we collected subgroups in the front obtained by all methods and as-
sumed that a subgroup is considered a true dominating subgroup if
it is not dominated by any other subgroup. We also considered the
interpretability of subgroups, including the metrics (2) #Subgroups(S)
= number of subgroups in front, (3) Avg_len(L) = average length of
antecedent(i.e., number of covariates) used to describe the subgroups
and (4) Coverage(C%) = The average percent of units in a subgroup to
the total number of units.

Result analysis. The experimental results are reported in Tab. 2. Our
model has near-perfect precision (the bigger, the better), indicating that
for “Pareto fronts” in other methods, our model always finds a dominant
subgroup that is better in at least one objective. This is mainly due to the
fact that we directly formalize and solve the constrained multi-objective
optimization problem. Some methods use a two-stage approach to
subgroup generation and selection, such as CT and CF, which partition
the covariate space through trees and select the best subgroups. DT,
on the other hand, only considers covariates and outcomes, ignoring
treatment changes. Missing important subgroups in the initial stage may
result in suboptimal results and reduced precision. We also uncover
more diverse subgroups, averaging 15.4 subgroups distributed over the
Pareto front, which is about 3 times that of other techniques. The small
antecedent length and coverage of our method indicate fine-grained
subgroups. Adjusting the minimal coverage limit can yield larger
subgroups. As the number of covariates increases (10 to 100), our
model remains stable, demonstrating that the efficient heuristic genetic
algorithm can find satisfactory subgroups in high-dimensional covariate
spaces, whereas other approaches or manual selection fail.

7.2 Case Studies
We use two cases to demonstrate the analysis process of CausalPrism
to explore causal heterogeneity from real datasets.

7.2.1 Case 1: Default of Credit Card Clients

This dataset contains behavioral data of about 30,000 credit card cus-
tomers. The treatment is the credit limit (1 for greater than 200,000
and 0 for less), the outcome is default status (1 is defaulted, 0 is not),
and the covariates include gender, education, marital status, age, and
historical bill amounts etc. An account manager plans to raise credit
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Table 2: Quantitative metrics for different causal subgroups discovery methods. Black: best. Underline: second best. (The experimental results of
CRE and BRCG on Twins are missing due to code execution errors.)

Methods Ours CT CF CRE DT PYS BRCG

Metric P S L C P S L C P S L C P S L C P S L C P S L C P S L C

Syn-1 1.0 17 4.0 3.8 0.0 6 6.0 7.0 0.3 8 5.7 3.2 0.5 2 2.3 30.2 0.0 8 3.8 9.1 0.0 3 1.4 13.7 0.0 2 3.0 12.5

Syn-2 0.9 14 3.0 3.5 0.3 3 4.3 12.8 0.0 7 4.5 3.2 0.1 8 2.3 28.7 0.1 7 4.0 8.6 0.0 3 1.2 16.9 0.0 3 3.0 11.8

Syn-3 1.0 17 3.8 3.7 1.0 3 6.4 5.8 0.0 6 5.2 3.1 0.0 3 2.1 32.7 0.0 4 4.0 9.9 0.0 5 1.0 20.1 0.0 3 3.2 9.1

Syn-4 1.0 18 3.6 3.5 0.4 5 6.2 7.6 0.5 2 4.4 2.7 0.2 5 1.7 32.2 0.2 5 4.0 8.3 0.0 8 1.0 20.1 0.0 1 10.0 35.4

Syn-5 0.9 19 4.0 3.4 0.0 7 8.5 5.2 0.0 2 5.5 2.5 1.0 1 1.7 35.7 0.0 4 4.0 12.5 0.0 3 1.0 20.0 0.0 1 8.0 33.5

Syn-6 1.0 13 3.1 3.2 0.0 6 5.4 10.6 0.0 1 4.4 2.6 0.0 3 2.6 31.3 0.0 3 4.0 9.6 0.0 11 1.0 20.1 0.0 1 1.0 40.0

Twins 0.8 15 4.0 4.0 0.2 5 5.1 9.7 1.0 2 5.7 4.4 / / / / 0.0 2 2.9 13.9 0.0 7 2.6 21.1 / / / /

IHDP 1.0 10 4.0 3.1 0.1 7 4.1 7.5 0.0 11 3.1 11.9 0.0 3 1.5 28.8 0.0 3 2.6 18.1 0.0 2 2.8 19.4 0.0 2 2.5 24.2

Average 1.0 15.4 3.7 3.5 0.3 5.3 5.8 8.3 0.2 4.9 4.8 4.2 0.3 3.6 2.0 31.4 0.0 4.5 3.7 11.0 0.0 5.3 1.5 19.0 0.0 1.9 4.4 23.8

limits to boost interest profits and transaction volume but avoids default
risk by using CausalPrism to identify acceptable credit recipients.

He first loads the observational data on client behavior and sets the
maximum subgroup antecedent length to 7 and the minimum coverage
to 5%. Afterward, the Causal Subgroup View (Fig. 1-A1) displays the
causal subgroups that the model automatically mines from the data
(R1). He scrolls through the table to see descriptions of the covariates
involved in the subgroup antecedents and clicks to see the details (R2).
He found that two subgroups had similar distributions of covariates and
were both of small size, so he clicked the “Merge Subgroups” button
to generate a large one (R3). He wanted to study risky subgroups
and creditworthy subgroups, but checking each subgroup one by one
was tedious, so he used the multi-attributes ranking function. To find
risky subgroups, he first set an inverted mapping from a variance value
to the length of a bar, that is, a longer bar represents less variance.
Then, he combined the treatment effects, the outcome variances of the
treatment and the control group as objectives of subgroup identification
and assigned weights of 6:2:2. As shown in Fig. 1-A3, after sorting in
descending order of the combined column and filtering by the number
of covered units greater than 950, S98 rose to the first place (R4), which
includes past bill amounts, repayment records, etc. S98 has an effect of
0.4, a treatment group outcome variance of 0.24, and a control group
outcome variance of 0.03. He explained that these customers often
overdue their repayments (the repay status indicates that the number of
overdue months is up to 8), and their recent bill amounts are relatively
high. Therefore, increasing their credit limit makes them more prone
to defaults and a priority group to monitor.

To further verify the causal subgroup (R5), he went to the Treatment
Effect Validation View (Fig. 1-C). In S98, the treatment group contains
722 units, the control group contains 238 units, and the number of
matched unit pairs reaches 208. The propensity score histogram proves
that for each unit in the control group, a similar matching unit can be
found in the treatment group almost all the time. In the dot plot of
the ITE, the dots are mostly distributed in the middle or on the right
side, indicating that increasing the credit limit has a positive effect on
default. The detailed information in the table suggests that the outcome
goes from 0 to 1 (i.e., from non-default to default) in matched pairs
of similar units (e.g., units with id 2184 and 6246) after the treatment,
which enhances his trust in the causal conclusion.

He next sought higher-credit subgroups for comparison. According
to experience, these subgroups should have lower effects and variances,
so he canceled the invert mapping of variances and sorted the combined
columns in ascending order (R4). As shown in Fig. 6, the first subgroup,
S24, caught his attention. It had an effect of 0.01, a treatment group
outcome variance of 0.04, a control group outcome variance of 0.03,
and a coverage of 968 people. Based on the antecedent description, he
believed that this group had good repayment records in the past (the
repay status is -1, -2, and 0) and had the habit of automatic repayment

(the presence of a negative value of bill represents an automatic deposits
into the credit card every month). The dot plot with dots concentrated
at 0 also proves that increasing the limit hardly causes defaults.

7.2.2 Case 2: Bank Marketing

The dataset comes from a bank’s marketing campaign, in which the
treatment is the number of phone calls to customers (1 for more than
two times, 0 otherwise), and the outcome is whether the customer
makes a deposit (1 yes, 0 no), and the other 15 covariates consist of
the customer’s age, occupation, marital status, education level, recent
contact data, and other socioeconomic indicators. An analyst wanted to
identify the groups where increased contact could lead to deposits.

With the Causal Subgroup View, she found that many subgroups
have covariates of job, month, and duration, aligning with her do-
main knowledge, as there are differences in the financial capacity of
clients across occupations and deposits have low and peak times of the
year(R1,R2). The length of the last contact also reflects the customer’s
wishes. Since telemarketing failure will not bring serious consequences,
she placed greater emphasis on the effect strength and customer cover-
age (R4). Then, she combined the effect and coverage metrics, set the
weights to 70% and 30% respectively, and sorted to get the subgroup
S70 that suits her preference (Fig. 7-A). The subgroup is described
as job: blue-collar, entrepreneur, management, retired, etc.; duration:
204-3881, age: 31- 95; contact day: 1-13. The corresponding effect is
0.31 with 394 covered units. She guessed that these middle-aged and
elderly people had a sound financial foundation, and previous contacts
also showed that they were interested. In addition, the beginning of
the month is suitable for promoting deposits because wages are usually
just paid.

To verify the reliability of the effect, she turned to the Treatment
Effect Validation View. She recognized that almost all units in the
treatment group had matching counterparts in the control group, ensur-
ing the validity of the effect estimates. The dot plot revealed a high
mean and a wide spread of dots, implying greater uncertainty (R5).
Leveraging the detailed information provided by the table (Fig. 7-B),
she found that an increase in the number of contacts indeed promotes
deposits, so she decided to start by selecting those customers (e.g., the
user with id 10888) with fewer contacts in the matched pair with an
individual treatment effect of 1 since they are more likely to purchase
deposits after several more contacts.

7.3 Expert Interviews

We conducted informal interviews with four experts, two of whom (E1,
E2) are data analysts at technology companies, E3 is a Ph.D. student
studying causality, and E4 is a researcher at a university medical school
who studies big data mining for medical data. They had not been
involved in the previous design process.
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Fig. 7: The subgroup identified in Case 2 as suitable for multiple contact
to market deposits. (A) This subgroup is mostly people who have good
jobs and showed interest in the last communication. They also have
a large treatment effect and coverage rate. (B) The dot plot of ITE is
skewed towards the strong side of the effect. Although it has a large
variance, it is within the acceptable range of the user.

Procedure. Each interview consisted of four steps, which are an
introduction of background (5min), a demo of usage cases (15min),
a think-aloud exploration (15min), and a talk for feedback collection
(10min). Finally, we summarized comments, which includes reviews on
on both the proposed model and the prototype system, and suggestions.

Reviews on the proposed model. Experts believe the causal sub-
group discovery model can find subgroups with significant treatment ef-
fects compared to the population average. E1 said, “When facing multi-
dimensional observation data, I am usually left with time-consuming
manual subgroup analysis, whereas this model gives me quick guid-
ance on subgroups and helps to uncover unexpected conclusions.” E3
praised that rules make subgroups easier to understand than clustering.
Also, causal tree or forest-based approaches include numerous repeated
covariate descriptions since many leaves share ancestor routes. Solving
subgroups with multi-objective optimization is straightforward and
yields better results. E4 stated that it would be more effective if they
could freely combine different objectives and constraints.

Reviews on the prototype system. Experts confirmed that Causal-
Prism’s visual design is easy to grasp. E1 and E2 thought the Causal
Subgroup View was intuitive because they utilized similar Excel spread-
sheets for work. E4 recommended dot plots for their clear explanation
of the trade-off between bias and variation in treatment effects esti-
mation. E3 said the multi-attribute ranking visualization is useful for
decision-making situations where users have diverse preferences for
several objectives, such as weighing revenues and costs when choosing
an advertisement audience. E4 highlighted that adding and modifying
subgroups helps incorporate domain knowledge and improves analyti-
cal freedom beyond model outputs.

Suggestions. Experts offered insightful advice on CausalPrism.
E2’s advice is to the function of merging subgroups with neighboring
attribute values on the covariates, which can reduce the number of
fragmented subgroups. Taking the advice, we enabled subgroup editing
options, consisting of merging or splitting subgroups based on similarity
and size, in the Covariate Projection View. E4 told us that manual
editing of subgroups would be tedious if many predefined subgroups
needed to be introduced. It would be nice if the Causal Subgroup
View could automatically generate subgroups that have been recorded
by experts by connecting with external knowledge bases. We plan to
explore this feature by taking knowledge graphs as input.

8 DISCUSSION

This section discusses the scalability, lessons learned, and the limita-
tions and future work of CausalPrism.

Scalability. (1) The running efficiency of the proposed model is
mainly affected by the number of subgroups 𝑃. The complexity in the
subgroup generation stage is 𝑂 (𝑃𝑑), where each subgroup could be

described by at most 𝑑 covariates. The following three steps, checking
the dominance relation in pairs, calculating the crowding distance of
each subgroup, and sorting and selection, have complexities of 𝑂 (𝑃2),
𝑂 (𝑃), and 𝑂 (𝑃 log𝑃), respectively. The overall time complexity is
𝑂 (𝑃𝑑 + 𝑃2). (2) For visualization, the covariate table may become
crowded as the number of covariates increases; we moved the covari-
ates that appear more frequently in the subgroup antecedents forward
and added sliders and column folding functions to alleviate this. The
dot plot in the Treatment Effect Validation View may appear to be
overplotted due to an excessive number of matching units. We used
sampling to reduce the number of dots and maintain the shape of the
distribution. Other possible solutions are non-linear dot plots with
adaptive dot sizes [49].

Lessons learned. We gained valuable insights by developing Causal-
Prism. (1) Whether to analyze the heterogeneity of the causal graph
structure or the HTE depends on the task. Causal discovery can identify
many causal relationships among variables, such as gene regulatory net-
works. In the absence of prior knowledge of the causal structure, causal
inference is a more general method, such as studying the treatment
effect of policies on economic indicators. (2) Causal heterogeneity
analysis benefits from multi-objective optimization. Our initial opti-
mization target was treatment effect strength, but experts stressed that
in actual applications, they would also evaluate many objectives, such
as outcome variance, cost per unit, and return on investment (ROI). We
then reduce multi-objectives optimization to single-objectives optimiza-
tion by weighting (e.g., 𝜏 +𝑤0𝜎

2 (0) +𝑤1𝜎
2 (1)). However, experts

said weights are sensitive and hard to modify, so the Pareto front of
the MOO problem was eventually learned. We take effect and vari-
ances as objectives, but they can be expanded flexibly, which helps to
meet diverse user preferences. (3) Explanations can support human-in-
the-loop causal analysis, but too much information causes cognitive
overload. Our initial prototype solution used a white-box causal sub-
group discovery model based on decision trees, trading performance for
interpretability. However, experts said they value the model’s precision
in real scenarios. If the model is bad, explaining it is pointless. Thus,
we proposed an effective causal subgroup discovery model with a pop-
ular CATE estimator (IPW) and a heuristic search algorithm. We also
provided post-hoc visualizations of subgroups and treatment effects to
aid user interpretation.

Limitations and future work. Three limitations are observed in
CausalPrism. First, subgroups support understanding data from the
level of groups but may obscure individual uniqueness. For numerical
attributes, units in the same subgroup may still have subtle covari-
ate differences, and similar covariate values may belong to separate
subgroups due to boundary divisions. Also, subgroup quality can be
assessed based on external or internal similarity metrics. Second, our
approach considers a single outcome. A treatment may have multi-
ple outcomes. For example, a medicine may cause mortality, disease
progression, or adverse events. A comprehensive evaluation of the treat-
ment effectiveness should consider all possible outcomes. Future plans
include combining causal inference approaches like mediation analy-
sis [53] and multi-task learning [1] for multiple outcomes. Third, we
assume enough confounding variables in observational data. However,
unobserved variables may distort effect estimates in some cases. For
example, patients’ diets may also affect treatment effects. Combining
RCTs and observational studies [15] is a promising approach.

9 CONCLUSION

In this paper, we propose a visual analytics approach to support users
in identifying, comparing, ranking, and validating subgroups with
significant treatment effects in observational data. We first introduce
interpretable rules to describe subgroups and then formalize the causal
subgroup discovery into a constrained multi-objective optimization
problem, whose corresponding Pareto optimal subgroups are efficiently
solved by a heuristic genetic algorithm. A visual analysis system,
CausalPrism, is developed to implement the proposed approach, which
features a series of visualizations such as subgroups—covariate tables,
multi-attribute rankings, and treatment effect explanations. Quantitative
experiments prove that our model outperforms state-of-the-art methods
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in terms of precision and readability. Case studies and expert interviews
demonstrate the usability of the system in helping users explore and
interpret subgroups that satisfy different preferences.

ACKNOWLEDGMENTS

We would like to thank all the reviewers for their constructive com-
ments. This work was supported by the National Natural Science
Foundation of China (# 62132017) and Zhejiang Provincial Natural
Science Foundation of China (# LD24F020011).

REFERENCES

[1] A. M. Alaa and M. Van Der Schaar. Bayesian inference of individualized
treatment effects using multi-task gaussian processes. Advances in Neural
Information Processing Systems, 30, 2017. 9

[2] S. Athey and G. Imbens. Recursive partitioning for heterogeneous
causal effects. Proc. NAS, 113(27):7353–7360, 2016. doi: 10.1073/pnas.
1510489113 2, 7

[3] S. Athey and S. Wager. Estimating treatment effects with causal forests:
An application. Observational Studies, 5(2):37–51, 2019. doi: 10.1353/
obs.2019.0001 2

[4] M. Atzmueller. Subgroup discovery. WIREs Data Mining and Knowledge
Discovery, 5(1):35–49, 2015. doi: 10.1002/widm.1144 3

[5] M. Atzmüller and F. Lemmerich. Fast subgroup discovery for continuous
target concepts. In Proc. ISMIS, p. 35–44, 2009. doi: 10.1007/978-3-642
-04125-9_7 3

[6] M. Atzmüller and F. Puppe. Sd-map - a fast algorithm for exhaustive
subgroup discovery. In Proc. ECML PKDD, p. 6–17, 2006. doi: 10.
1007/11871637_6 2, 3

[7] J. Bae, T. Helldin, and M. Riveiro. Understanding indirect causal rela-
tionships in node-link graphs. Computer Graphics Forum, 36(3):411–421,
2017. doi: 10.1111/cgf.13198 3

[8] J. Bae, E. Ventocilla, M. Riveiro, T. Helldin, and G. Falkman. Evaluating
multi-attributes on cause and effect relationship visualization. In Proc.
VISIGRAPP, pp. 64–74, 2017. doi: 10.5220/0006102300640074 3

[9] F. J. Bargagli-Stoffi, R. Cadei, K. Lee, and F. Dominici. Causal rule
ensemble: Interpretable discovery and inference of heterogeneous causal
effects. arXiv preprint arXiv:2009.09036, 2020. doi: 10.48550/arXiv.
2009.09036 2, 7

[10] C. J. Blumberg. Causal inference for statistics, social, and biomedical
sciences: An introduction. International Statistical Review, 84(1):159–
159, 2016. doi: 10.1111/insr.12170 4

[11] L. Breiman and R. A. Olshen. Points of significance: Classification and
regression trees. Nature Methods, 14:757–758, 2017. doi: 10.1038/nmeth.
4370 7

[12] T. Cai, L. Tian, P. H. Wong, and L. J. Wei. Analysis of randomized compar-
ative clinical trial data for personalized treatment selections. Biostatistics,
12(2):270–282, 2011. doi: 10.1093/biostatistics/kxq060 2

[13] M. Caliendo and S. Kopeinig. Some practical guidance for the imple-
mentation of propensity score matching. Journal of Economic Surveys,
22(1):31–72, 2008. doi: 10.1111/j.1467-6419.2007.00527.x 4

[14] F. Cheng, Y. Ming, and H. Qu. Dece: Decision explorer with counter-
factual explanations for machine learning models. IEEE Transactions on
Visualization and Computer Graphics, 27(2):1438–1447, 2021. doi: 10.
1109/TVCG.2020.3030342 3

[15] B. Colnet et al. Causal inference methods for combining randomized trials
and observational studies: a review. arXiv preprint arXiv:2011.08047,
2020. doi: 10.48550/arXiv.2011.08047 9

[16] S. Dash, O. Günlük, and D. Wei. Boolean decision rules via column
generation. In Proc. NeurIPS, 2018. doi: 10.48550/arXiv.1805.09901 7

[17] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multi-
objective genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary
Computation, 6(2):182–197, 2002. doi: 10.1109/4235.996017 5

[18] M. J. del Jesús, P. González, F. Herrera, and M. Mesonero. Evolutionary
fuzzy rule induction process for subgroup discovery: A case study in
marketing. IEEE Transactions on Fuzzy Systems, 15(4):578–592, 2007.
doi: 10.1109/TFUZZ.2006.890662 3

[19] Z. Deng, D. Weng, X. Xie, J. Bao, Y. Zheng, M. Xu, W. Chen, and Y. Wu.
Compass: Towards better causal analysis of urban time series. IEEE
Transactions on Visualization and Computer Graphics, 28(1):1051–1061,
2022. doi: 10.1109/TVCG.2021.3114875 3

[20] D. Dingen et al. Regressionexplorer: Interactive exploration of logistic
regression models with subgroup analysis. IEEE Transactions on Visualiza-
tion and Computer Graphics, 25(1):246–255, 2019. doi: 10.1109/TVCG.
2018.2865043 3

[21] K. Furmanova et al. Taggle: Combining overview and details in tabular
data visualizations. Information Visualization, 19(2):114–136, 2020. doi:
10.1177/1473871619878085 3, 6

[22] D. Gamberger and N. Lavrac. Expert-guided subgroup discovery: Method-
ology and application. Journal of Artificial Intelligence Research, 17:501–
527, 2002. doi: 10.1613/jair.1089 2, 3

[23] M. Gangl. Causal inference in sociological research. Annual review of
sociology, 36(1):21–47, 2010. doi: 10.1146/annurev.soc.012809.102702

10

https://doi.org/10.1073/pnas.1510489113
https://doi.org/10.1073/pnas.1510489113
https://doi.org/10.1353/obs.2019.0001
https://doi.org/10.1353/obs.2019.0001
https://doi.org/10.1002/widm.1144
https://doi.org/10.1007/978-3-642-04125-9_7
https://doi.org/10.1007/978-3-642-04125-9_7
https://doi.org/10.1007/11871637_6
https://doi.org/10.1007/11871637_6
https://doi.org/10.1111/cgf.13198
https://doi.org/10.5220/0006102300640074
https://doi.org/10.48550/arXiv.2009.09036
https://doi.org/10.48550/arXiv.2009.09036
https://doi.org/10.1111/insr.12170
https://doi.org/10.1038/nmeth.4370
https://doi.org/10.1038/nmeth.4370
https://doi.org/10.1093/biostatistics/kxq060
https://doi.org/10.1111/j.1467-6419.2007.00527.x
https://doi.org/10.1109/TVCG.2020.3030342
https://doi.org/10.1109/TVCG.2020.3030342
https://doi.org/10.48550/arXiv.2011.08047
https://doi.org/10.48550/arXiv.1805.09901
https://doi.org/10.1109/4235.996017
https://doi.org/10.1109/TFUZZ.2006.890662
https://doi.org/10.1109/TVCG.2021.3114875
https://doi.org/10.1109/TVCG.2018.2865043
https://doi.org/10.1109/TVCG.2018.2865043
https://doi.org/10.1177/1473871619878085
https://doi.org/10.1177/1473871619878085
https://doi.org/10.1613/jair.1089
https://doi.org/10.1146/annurev.soc.012809.102702


© 2024 IEEE. This is the author’s version of the article that has been published in IEEE Transactions on Visualization and
Computer Graphics. The final version of this record is available at: xx.xxxx/TVCG.201x.xxxxxxx/

2
[24] S. Gratzl, A. Lex, N. Gehlenborg, H. Pfister, and M. Streit. Lineup: Visual

analysis of multi-attribute rankings. IEEE Transactions on Visualization
and Computer Graphics, 19(12):2277–2286, 2013. doi: 10.1109/TVCG.
2013.173 3, 6

[25] N. Greifer. cobalt: Covariate Balance Tables and Plots, 2024. R package
version 4.5.4, https://github.com/ngreifer/cobalt. 3

[26] H. Grosskreutz and S. Rüping. On subgroup discovery in numerical
domains. Data Mining and Knowledge Discovery, 19:210–226, 2009. doi:
10.1007/s10618-009-0136-3 3

[27] H. Grosskreutz, S. Rüping, and S. Wrobel. Tight optimistic estimates for
fast subgroup discovery. In Proc. ECML PKDD, pp. 440–456, 2008. doi:
10.1007/978-3-540-87479-9_47 3

[28] G. Guo, M. Glenski, Z. Shaw, E. Saldanha, A. Endert, S. Volkova, and
D. Arendt. Vaine: Visualization and ai for natural experiments. In Proc.
VIS, pp. 21–25, 2021. doi: 10.1109/VIS49827.2021.9623285 2, 3

[29] G. Guo, E. Karavani, A. Endert, and B. C. Kwon. Causalvis: Visualizations
for causal inference. In Proc. CHI, CHI ’23, article no. 462, 20 pages,
2023. doi: 10.1145/3544548.3581236 2, 3

[30] R. Guo, L. Cheng, J. Li, P. R. Hahn, and H. Liu. A survey of learning
causality with data: Problems and methods. ACM Computing Surveys,
53(4), article no. 75, 37 pages, jul 2020. doi: 10.1145/3397269 2

[31] E. Hariton and J. J. Locascio. Randomised controlled trials - the gold
standard for effectiveness research: Study design: randomised controlled
trials. BJOG, 125(13):1716, June 2018. 2

[32] F. Herrera, C. J. Carmona, P. González, and M. J. del Jesus. An overview
on subgroup discovery: foundations and applications. Knowledge and
Information Systems, 29:495–525, 2011. doi: 10.1007/s10115-010-0356-2
3

[33] J. L. Hill. Bayesian nonparametric modeling for causal inference. Journal
of Computational and Graphical Statistics, 20(1):217–240, 2011. doi: 10.
1198/jcgs.2010.08162 2

[34] K. Hirano, G. Imbens, and G. Ridder. Efficient estimation of average
treatment effects using the estimated propensity score. Econometrica,
71(4):1161–1189, 2000. doi: 10.1111/1468-0262.00442 5

[35] M. N. Hoque and K. Mueller. Outcome-explorer: A causality guided
interactive visual interface for interpretable algorithmic decision making.
IEEE Transactions on Visualization and Computer Graphics, 28(12):4728–
4740, 2022. doi: 10.1109/TVCG.2021.3102051 3

[36] G. W. Imbens. Nonparametric Estimation of Average Treatment Effects
Under Exogeneity: A Review. The Review of Economics and Statistics,
86(1):4–29, 2004. doi: 10.1162/003465304323023651 5

[37] Z. Jin, S. Guo, N. Chen, D. Weiskopf, D. Gotz, and N. Cao. Visual causal-
ity analysis of event sequence data. IEEE Transactions on Visualization
and Computer Graphics, 27(2):1343–1352, 2021. doi: 10.1109/TVCG.
2020.3030465 2, 3

[38] F. Johansson, U. Shalit, and D. Sontag. Learning representations for
counterfactual inference. In Proc. ICML, vol. 48, pp. 3020–3029, 2016.
doi: 10.48550/arXiv.1605.03661 2

[39] N. R. Kadaba, P. Irani, and J. Leboe. Visualizing causal semantics using
animations. IEEE Transactions on Visualization and Computer Graphics,
13(6):1254–1261, 2007. doi: 10.1109/TVCG.2007.70528 3

[40] A. Kale, Y. Wu, and J. Hullman. Causal support: Modeling causal in-
ferences with visualizations. IEEE Transactions on Visualization and
Computer Graphics, 28(1):1150–1160, 2022. doi: 10.1109/TVCG.2021.
3114824 3

[41] J. B. Kruskal. Nonmetric multidimensional scaling: a numerical method.
Psychometrika, 29(2):115–129, 1964. 6

[42] B. C. Kwon et al. Rmexplorer: A visual analytics approach to explore
the performance and the fairness of disease risk models on population
subgroups. In Proc. VIS, pp. 50–54, 2022. doi: 10.1109/VIS54862.2022.
00019 3
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